Modeling forces and moments at the base of a rat vibrissa during noncontact whisking and whisking against an object.

نویسندگان

  • Brian W Quist
  • Vlad Seghete
  • Lucie A Huet
  • Todd D Murphey
  • Mitra J Z Hartmann
چکیده

During exploratory behavior, rats brush and tap their whiskers against objects, and the mechanical signals so generated constitute the primary sensory variables upon which these animals base their vibrissotactile perception of the world. To date, however, we lack a general dynamic model of the vibrissa that includes the effects of inertia, damping, and collisions. We simulated vibrissal dynamics to compute the time-varying forces and bending moment at the vibrissa base during both noncontact (free-air) whisking and whisking against an object (collision). Results show the following: (1) during noncontact whisking, mechanical signals contain components at both the whisking frequency and also twice the whisking frequency (the latter could code whisking speed); (2) when rats whisk rhythmically against an object, the intrinsic dynamics of the vibrissa can be as large as many of the mechanical effects of the collision, however, the axial force could still generate responses that reliably indicate collision based on thresholding; and (3) whisking velocity will have only a small effect on the transient response generated during a whisker-object collision. Instead, the transient response will depend in large part on how the rat chooses to decelerate its vibrissae after the collision. The model allows experimentalists to estimate error bounds on quasi-static descriptions of vibrissal shape, and its predictions can be used to bound realistic expectations from neurons that code vibrissal sensing. We discuss the implications of these results under the assumption that primary sensory neurons of the trigeminal ganglion are sensitive to various combinations of mechanical signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibrissae motor cortex unit activity during whisking.

Rats generate stereotyped exploratory (5-12 Hz) vibrissa movements when navigating through their environment. Like other rhythmic behaviors, the production of whisking relies on a subcortical pattern generator. However, the relatively large vibrissae representation in motor cortex (vMCx) suggests that cortex also contributes to the control of whisker movements. The goal of this study was to exa...

متن کامل

Whisking Kinematics Enables Object Localization in Head-Centered Coordinates Based on Tactile Information from a Single Vibrissa

During active tactile exploration with their whiskers (vibrissae), rodents can rapidly orient to an object even though there are very few proprioceptors in the whisker muscles. Thus a long-standing question in the study of the vibrissal system is how the rat can localize an object in head-centered coordinates without muscle-based proprioception. We used a three-dimensional model of whisker bend...

متن کامل

Goal-directed whisking increases phase-locking between vibrissa movement and electrical activity in primary sensory cortex in rat.

We tested the hypothesis that behavioral context modulates phase-locking between rhythmic motor activity and concomitant electrical activity induced in primary sensory (S1) cortex. We used exploratory whisking by rat as a model system and recorded two measures: (i) the mystacial electromyogram ( nabla EMG) as a surrogate of vibrissa position, and (ii) the field potential ( nabla LFP) in S1 cort...

متن کامل

Electronic Theses and Dissertations Uc San Diego Title: Biomechanics and Cortical Representation of Whisking in the Rat Vibrissa System Biomechanics and Cortical Representation of Whisking in the Rat Vibrissa System

.................................................................................................................... xiii Chapter 1 – Introduction .............................................................................................. 1 Chapter 2 – Motor control in the rat vibrissa system .................................................. 5 2.1 The motor plant for whisking .................

متن کامل

Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration.

Rats actively tap and sweep their large mystacial vibrissae (whiskers) against objects to tactually explore their surroundings. When a vibrissa makes contact with an object, it bends, and this bending generates forces and bending moments at the vibrissa base. Researchers have only recently begun to quantify these mechanical variables. The present study quantifies the forces and bending moments ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 30  شماره 

صفحات  -

تاریخ انتشار 2014